Paper: Stochastic modeling of a serial killer

Unsettling new paper:

Stochastic modeling of a serial killer

We analyze the time pattern of the activity of a serial killer, who during twelve years had murdered 53 people. The plot of the cumulative number of murders as a function of time is of “Devils staircase” type. The distribution of the intervals between murders step length follows a power law with the exponent of 1.4. We propose a model according to which the serial killer commits murders when neuronal excitation in his brain exceeds certain threshold. We model this neural activity as a branching process, which in turn is approximated by a random walk. As the distribution of the random walk return times is a power law with the exponent 1.5, the distribution of the inter-murder intervals is thus explained. We confirm analytical results by numerical simulation.

via [1201.2458] Stochastic modeling of a serial killer.

Related posts:

  1. Meebome as Killer Marketing Tool
  2. Oil: Serial Equities Killer
  3. A Return to Venture Skewness (& Serial Persistence)
  4. The Key Feature for a Blackberry-Killer
  5. VCs, Serial Entrepreneurs, and the Triumph of Boilerplate Thinking